
Research Institute for Advanced Computer Science
NASA Ames Research Center

Threats and Countermeasures
for Network Security

Peter J. Denning

RIACS Technical Report 91.2

January 8, 1991

(NASA-CR-188883) THREATS AND

COUNTERMEASURES FOR NETWOPK SECURITY

(Research Inst. for Advanced Computer

Science) 28 p CSCL 09B
63160

N92-I1645

Unclas
0043083

,k_ II

Threats and Countermeasures for Network Security

Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-91.2

January 8, 1991

In the late 1980s, the traditional threat of anonymous breakins to networked computers was joined
by viruses and worms, multiplicative surrogates that carry out the bidding of their authors.
Technologies for authentication and secrecy, supplemented by good management practices, are the
principal countermeasures. Four articles on these subjects by the author from American Scientist are
gathered here.

This is a prepdnt of a paper that will be presented at the
Fourth Annual Computer Virus and Security Conference,
World Trade Center, New York City, March 14-15, 1991.

Work reported herein was supported in pan by Cooperative Agreement NCC2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association CUSRA).

Threats and Countermeasures for Network Security

PeterJ. Denning

Research Institute for Advanced Computer Science

January 8, 1991

As computing and telecommunicationsgrow worldwideand arcincorporatedever

more deeplyintobusinesspractices,we must dealwitha wideningvarietyof threatsto
thesecureand dependableoperationofour networksand thecomputersattachedtothem.
Until1987,breakinsby anonymous intrudersand fraudsortheftsby insiderswere the
major threats.Inthatyear,thesethreatswere agumented by thenew threatsofviruses
and worms, which areprograms thatactasmultiplicativesurrogatesforan intruder.

Moreover,virusesand worms arcoftenloadedwithlogicbombs thatwreak damage at
some time after the infection.

Technologies for authentication and secrecy, supplemented by good management
practices,aretheprincipalcountermeasures.Many observershave askedwhy little

actionhas been takentodeploythesecountermeasures.The recentappearanceofthe
NRC report,Computers atRisk (1990),and theeditedcollection,Computers Under

Attack(Addison-Wesley1990),demonstratea growinginterestindoingjustthat.The

positivepublicresponsetohasbeen gratifyingand portendssafernetworksintheyears
ahead.

Over thepastseveralyearsIhave writtenon theseaspectsforAmerican Scientist
magazine. What followsarethetextsoffourarticles:

Computer Viruses
The Interact Worm

Security of Data in Networks

Baffling Big Brother

1988, No 3
1989, No 2
1987, No 1
1988, No 5

-2-

Computer Viruses

American Scientist 1988, No 3

The worm, Trojan horse, bacterium, and virus are destructive programs

that attack information stored in a computer's memory. Virus programs,

which propagate by incorporating copies of themselves into other

programs, are a growing menace in the late-1980s world of unprotected,

networked workstations and personal computers. Limited immunity is

offered by memory protection hardware, digitally authenticated object

programs, and antibody programs that kill specific viruses. Additional

immunity can be gained from the practice of digital hygiene, primarily

the refusal to use software from untrusted sources. Full immunity

requires attention in a social dimension, the accountability of
programmers.

Sometime in the middle 1970s, the network of computers at a Silicon Valley

research center was taken over by a program that loaded itself into an idle workstation,

disabledthe keyboard, drew random pictureson the screen,and monitored the network

forother idleworkstationsto invade. The entirenetwork and allthe workstationshad to

bc shut down torestorenormal operation.

In earlySeptember 1986, a talentedintruderbroke intoa largenumber of computer

systems in the San Francisco area,including9 universities,15 SiliconValley companies,

9 ARPANET sims,and 3 government laboratories.The intruderleftbehind re.compiled

loginprograms tosimplifyhisreturn.His goal was apparentlyto achieve a high score on

the number of computers cracked;no damage was done (1).

In December 1987, a Chrismms message thatoriginatedinWest Germany

propagated intothe Bitnetnetwork of IBM machines inthe United States.The message

contained a program thatdisplayedan image of a Christmas trecand sentcopies of itself

toeveryone in the mail distributionlistof the userforwhom itwas running. This prolific

program rapidlyclogged the network with a geometricallygrowing number of copies of

itself.Finallythe network had tobc shutdown untilallcopies could be locatedand

cxpurgamd.

For two months in thefallof 1987, a program quiedy incorporatedcopiesof itself

intoprograms on personal computers atthe Hebrew University.Itwas discovered and

dismantled by a student,Yuval Rakavy, who noticed thatcertainlibraryprograms were

growing longer forno apparentreason. He isolatedthe errantcode and discovered thatif

executed on certainFridays the thirteenththe computer running itwould slow down by

80%, and on Friday 13 May 1988, itwould eraseallfiles.That date was the fortieth

anniversaryof the lastday Palestinewas recognized as a separatepoliticalentity.

Rakavy designed anotherprogram thatdetectedand erased allcopiesof the errant

program itcould find.Even so,he could not bc completely surehe had eradicatedit.

-3-

These four incidents illustrate the major types of programs that attack other

programs in a computer's memory. The first type is a worm, a program that invades a

workstation and disables it. The second is a Trojan horse, a program that performs some

apparently useful function, such as login, while containing hidden code that performs an

unwanted, usually malicious function. This name is inspired by the legendary wooden

horse built by the Greek army, ostensibly as an offering to Athena, which in the dark of

night disgorged its bellyful of murderous soldiers into the sleeping streets of Troy. The

third type is a bacterium, a program that replicates itself and feeds off the host system by

preempting processor and memory capacity. The fourth is a virus, a program that

incorporates copies of itself into the machine codes of other programs and, when those

programs arc invoked, wreaks havoc in the manner of a Trojan horse.

Ican citenumerous otherincidentsinwhich informationstoredincomputers has

been attackedby hostileprograms. An easternmedical centerlostnearly40% of its

recordsto a malicious program in itssystem. StudentsatLehigh Universitylost

homework and other datawhen aviruseraseddiskettesinsertedintocampus personal

computers. Some programs availablepubliclyfrom electronicbulletinboards have

destroyedinformationon the disksof computers intowhich they were read. A recent

New York Times article(2)describesmany examples and documents the risingconcern

among computer network managers, software dealers,and personal computer users about

theseforms of electronicvandalism. In an efforttoalertconcerned computer scientists

tothe onslaught,the Associationfor Computing Machinery sponsors the Computer Risks

Forum, an electronicnewslettermoderated by PeterG. Neumann of SRI International,

which regularlypostsnoticesand analysesof such dangers.

The recent rash of viral attacks has drawn everyone's attention to the more general

problem of computer security, a subject of great complexity which has fascinated

researchers since the early 1960s (3). The possibility of pernicious programs propagating

through a file system has been known for at least twenty-five years. In his May 1985

Computer Recreations column in Scientific American, Kee Dewdney documented a

whole menagerie of beastly threats to information stored in computer memories,

especially those of personal computers (4), where an infected diskette earl transmit a

virus to the main memory of the computer, and thence to any other diskette (or to hard

disk). Ken Thompson, a principal designer of UNIX TM, and Ian Witten have documented

some of the more subtle threats to computers that have come to light in the 1980s (5,6).

It is important to keep in mind that worms, Trojan horses, bacteria, and viruses are

all programs designed by human beings. Although a discussion of these menaces brings

up many intriguing technical issues, we should not forget that at the root of the problem

arcprogrammers performing disruptiveactsunder the cloak of anonymity conveniently

provided by many computer systems.

Iwillfocus on viruses,the most perniciousof theattacksagainstinformationin

computers. A virusisa code segment thathas bccn incorporatedintothe body of another

program, "infecting" it.When the viruscode isexecuted,itlocatesa few other

uninfectedprograms and infectsthem; in due course,the number of infectedprograms

can grow quitelarge.Viruses can spreadwith remarkable speed:in experimental work

performed in 1983 and 1984, Fred Cohen Of the Universityof Cincinnatidemonstrated

thata simple virusprogram can propagate to nearlyevery partof a normally operating

computer system within a matter of hours. Most virusescontaina marker thatallows

=4-

them to recognize copies of themselves; this avoids discovery, because otherwise some
programs would get progressively longer under multiple infections. The destructive acts
themselves come later:, any copy of the virus that runs after some appointed date will
perform such an unwanted function.

A Trojan horse program is the most common means of introducing a virus into a
system. It is possible to rig a compiler with an invisible Trojan horse that implants
another Trojan horse into any selected program during compilation.

A virus that takes the form of statements inserted into the high-level language

version of a program -- that is, into the source file -- can possibly bc detected by an

expert who reads the program, but finding such a program in a large system can be
extremely difficult. Many viruses arc designed to evade detection completely by
attaching themselves to object files, the machine coded images of high-level program
sources that are produced by compilation. These viruses cannot be detected from a
reading source programs.

The first serious discussions of Trojan horses took place in the 1960s. Various
hardware features were developed to reduce the chances of attack (3), including virtual

memory, which restricts a program's to a limited region of memory, its "address space"
(7). All these features arc based on the principle of least privilege, which reduces the set
of accessible objects to the minimum a program needs in order to perform its function.
Because a suspect program can Ix: run in a strictly confined mode, any Trojan horse it
contains will bc unable to perform much damage.

How effective is virtual memory against viruses? Memory protection hardware can
significantly reduce the risk, but a virus can still propagate to legitimately accessible

programs, including portions of the operating system. The late of propagation may be
slowed by virtual memory, but propagation is not stopped. Most PCs arc especially
vulnerable because they have no memory protection hardware at all; an executing
program has flee access to anything in memory or on disk. A network of PCs is even
more vulnerable,becauseany PC canpropagatean infectedcopy ofa program toany
otherPC, no questionsasked.

What can be done toprotectagainstvirusesina computer orworkstationwithout

memory protectionhardwareorcontrolson accesstofiles?One common proposalisto
retrofittheoperatingsystemwith a writequerycheckthataskstheuserforpermissionto

allowtherunningprogram tomodify a file.This givestheuseran opportunityto
determinethattheprogram isattemptingtogainaccestounauthorizedfiles.Itis,

unfortunately,hardlyworkablecvcn forexperiencedprogrammers becauseofthe

difficultyofdiscoveringwhich fdcsa runningprogram must legitimatelymodify. A
designthatsuppresseswritequeriesforfilesnamed inan authorizationlistassociated

witha program can be subvertedby a virusthatadds thename of theunauthorizedfileto
thelistbeforeattackingit.

A more powerfulimmunizationscheme isbasedon digitalsignaturesof objectfiles.
When a program isinstalledina system,an authenticatoriscreatedby producinga

checksum thatdependson allthebitsofa file,which isthensignedwiththesecretkey of

thepersonwho storedthefile(8).The authenticatorcan bc unlockedby applyingthe
publickey ofthatperson.A usercan confirmthata fileisan exactcopy of what was

storedby computingitschecksum and comparingthatwiththeunlockedauthenticator.

-5-

A program infected by a virus would fail this test. Without access to the secret key, the

designer of the virus could not produce a valid authenticator for the infected program.

This scheme also works for programs obtained from trusted sources over a network: each

program comes with an authenticator sealed by the trusted producer.

One way to implement this scheme is to equip the operating system with a

background process that randomly checks files against their authenticators. If a virus has

entered the system, this process will eventually discover an infected file and raise the

alarm. Another way to implement this scheme is to "innoculate" an object program by

placing an authentication subroutine at its entry point. This implementation is slow,

however, and can bc defeated by a virus that invades entry points: by the time the

authenticator gets control, the virus will already have acted.

The authenticator scheme relies on the protection of the secret key, which cannot be

complete unless the key is kept outside the system. It also rests on the integrity of the

system itself: for example, a sophisticated attack against the program that reports whether
a file has been infected could disable the scheme.

A program called an antibody can offer limited remedies should a virus penetrate a

system. Such a program examines an object file to determine whether a known virus has

been incorporated. It may also remove the virus from the infected program. This limited

form of protection can be very effective against known viruses, but it cannot identify new
ones.

As we have seen, each of the major technical mechanisms -- memory protection

hardware, digital-signature authenticators, and antibodies -- offers limited protection

against viruses (and Trojan horses). Can the operating procedures followed by those who
use a computer system lower the risk further?

Yes! An additional measure of protection can be obtained by care in the way one

uses a computer. Analogies with food and drug safety are helpful. Just as one would not

consider purchasing food or capsules in unsealed containers or from untrusted sources,

one can refuse to use any unsealed software or software from untrusted sources. Never

insert a diskette that has no manufacturer's seal into your PC. Never use a program

bon'owcd from someone who does not practice digital hygiene to your own standards.

Beware of software obtained from public bulletin boards. Purchase programs that check

other programs for known viruses. Be wary of public domain software (including virus

eradicators!). Monitor the last-modified dates of programs and files. Don't execute

programs sent in electronic mail -- even your friends may have inadvertently forwarded a

virus. Don't let employees bring software from home.

The problem of viruses is difficult, both technically and operationally, and no

solution oriented entirely along technical or operational lines can be complete. There is a

third, social dimension to the problem: we don't know how to hold people fully

accountable for the actions of their programs in a networked system of computers. A

complete solution must involve all three dimensions.

Computer scientists arc divided over whether it serves the field to publish accounts

of viral attacks in full technical detail. (This article, being superficial, does not count.)

Some hold that revelations of technical detail -- as in Dewdney (4) or Witten (6) -- arc

reprehensible because they give the few would-be perpetrators a blueprint for actions that

can make life exceedingly difficult for the many innocent users, and because there arc

-6-

few successful defenses against the attacks. Others hold that the main hope for a long

term solution is to mobilize the "good guys" by setting forth the problems in detail; the

short term risk, according to this view, is offset by the long-term gain. Most computer

scientists favor this way of mobilizing forces to oppose computer sabotage.

References

1. B. Reid. 1987. Reflections on some recent widespread computer breakins. ACM

Communications 30, 2. February. 103-105.

2. Vin McLellan. 1988. Computer systems under siege. NY Times Sunday Business

Section. January 31.

3. D.E. Denning. 1982. Cryptography and Data Security. Addison-Wesley.

4. A.K. Dewdney. 1985. Computer Recreations (A Core War Bestiary of Viruses,

Worms, and other Threats to Computer Memories). Scientific American 252, 3.
March. 14-23.

5. K. Thompson. 1984.

August. 172-80.

6. Ian H. Wit'ten. 1987.

4. Summer. 7-25.

7. P.J. Denning. 1986. Virtual memory. American Scientist 74, 3 (May-June). 227-
229.

8. P.J. Denning. 1987. Security of data in networks. American Scientist 75, I

(January-February). 12-14.

Reflections on trusting trust. ACM Communications 27, 8.

Computer (In)security: Infiltrating Open Systems. Abacus 4,

-7-

How a _dms works

main

A Trojan horse in a compiler

main memory

rigged

source object
file file

A Trojan home is a LmefulprogramconlaJninghiddencode
(_d arN thatpe_._ an unwant_ _ func_..
It might cow an imoker's pdvatofilm into Im m of memory
b_r,_ng to ,. owndes_.,r, h'.x,,_ _n_r,_ ._e ,nvok-
s_s file pm_c_on. # might ot_aln access to a subsysU_ normaJ-
,y mo_eu,_ _o the de_ner. A Tro_ horn _hU d.sVoys or

It Is some_'ms suggestodUlat TroW! hOrSescan be detect-
ed by scann_g a program's source fl_ _ smtemenm _'_ per-
form _ o._kJe the Wogn_'s spedfk_io_. K_
_ on. of lhe pdndpaldeslgnsn, ot u_', hss po_sd
out _hat _s smroach is h_L_j_,,y h_m:_L _-
Ing how to dg a (xxnp/_ W Introdu_ a Troth hor_ Into me or)-
jec/t_e o(any oitw sek)ctsd wogram, kx m_mVk, a logln pro-

cormk_ a}ways marts a segment of oo_ _a/allows k_n
when a sVec/_ pamvord (known on_ to _e Tro_ horn's de-
signer) is 0/v,m. The _n Wogram'sTn)jsn horn car,_ be de-
t,x_d b_ rss_no b m_e me.

Now, itm_ht seem that a can_ resting of _e ,_ed com-
I:_ier'sown sourcerdewouldroveaJIhs Trojan honm that me_ts
the k:_n Trojan horse.But U_s is not so. The dg0ed compl_ Is
Nulf an object_e. m:l can h'weby eon_in itsown Trojan horse
wilhouta mcord In its sourcerite._ has _ a
schem to _ a (:omp_ _. th_ way (5_b').

-9-

The Internet Worm

American Scientist 1989, No 2

In November 1988 a worm program invaded several thousand UNIX.

operated Sun workstations and VAX computers attached to the Research

Internet, seriously disrupting service for several days but damaging no

files. An analysis of the worm's decompiled code revealed a battery of

attacks by a knowledgeable insider, and demonstrated a number of

security weaknesses. The attack occurred in an open network, and little
can be inferred about the vulnerabilities of closed networks used for

critical operations. The attack showed that password protection

procedures need review and strengthening. It showed that sets of

mutually trusting computers need to be carefully controlled. Sharp
public reaction crystalized into a demand for user awareness and

accountability in a networked world.

Late in the evening of 2 November 1988 someone released a "worm" program into

the ARPAnet. The program expropriated the resources of each invaded computer and

generated replicas of itself on other computers, but did no apparent damage. Within

hours, it had spread to several thousand computers attached to the worldwide Research
Intemet.

Computers infested with the won.n were soon laboring under a huge load of

programs that looked like innocuous "shell" programs (command interpreters).

Attempts to kill these programs were ineffective: new copies would appear from Intemet

connections as fast as old copies were deleted. Many systems had to be shut down and

the security loopholes closed before they could be restarted on the network without
reinfestadon.

Fortuitously, the annual meeting of UNIX experts opened at Berkeley on the

morning of November 3. They quickly went to work to capture and dissect the worm.

By that evening, they had distributed system fixes to close all the security loopholes used

by the worm to infest new systems. By the morning of November 4, teams at lVIIT,

Berkeley, and other institutions had decompiled the worm code and examined the

worm's structure in the programming language C. They were able to confirm that the

worm did not delete or modify files already in a computer. It did not install Trojan

horses, exploit superuser privileges, Or _sn'fit passwords it had deciphered. It

propagated only by the network protocols TCP/IP, and it infested only computers running

Berkeley UNIX but not AT&T System V UNIX. As the community of users breathed a

collective sigh of relief, system administrators installed the fixes, purged all copies of the

worm, and restarted the downed systems. Most hosts were reconnected to the Internet by

November 6, but the worm's effect lingered: a few hosts were will disconnected as late

as November 10, and mail backlogs did not clear until November 12.

-10-

The worm's fast and massive infestation was so portentous that the New York Times
ran updates on page one for a week. The Wall Street Journal and USA Today gave it
fi'ont-page coverage. It was the subject of two articles in Science magazine (];2). It was
covered by the wire services, the news shows, and the talk shows. These accounts said
that over 6,000 computers were infested, but later estimates put the actual number
between 3,000 and 4,000, about 5% of those attached to the Interact.

On November 5 the New York Times broke the story that the alleged culprit was
Robert T. Morris, a Cornell graduate student and son of a well-known computer security
expert who is the chief scientist at the National Computer Security Center. A friend
reportedly said that Morris intended no disruption; the worm was supposed to propagate
slowly but a design error made it unexpectedly prolific. When he realized what was
happening, Morris has a friend post on an electronic bulletin board instructions telling
how to disable the worm -- but no one could access them because all affected computers
were down. As of February 1989, no indictments had been filed against Morris as

authorities pondered legal questions. Morris himself was silent throughout.

The worm's author went to great lengths to confound its discovery and analysis, a
delaying tactic that permitted the massive infestation. By early December 1988, Eugene
Spafford of Purdue (3), Donn Seeley of Utah (d), and Mark Eichin and Jon Rochlis of
M1T (S) had published technical reports about the decompiled worm that described the
modes of infestation and the methods of camouflage. (See Box 1.) They were impressed
with the worm's battery of attacks, saying that, despite errors in the source program, the
code was competently done. The National Computer Security Center requested them and

others not to publish the decompiled code, fearing that troublemakers might reuse the
code and modify it for destructive acts. Seeley replied that the question is moot because
the worm published itself in thousands of computers.

The reactions of the computer science community have been passionate. Some
editorial writers report that Morris has become a folk hero among students and

programmers, who believe that the community ought to be grateful that he showed us
weaknesses in our computer networks in time to correct them before someone launches a
malicious attack. The great majority of opinion, however, seems to go the other way.
Various organizations have issued position statements decrying the incident and calling
for action to prevent its recurrence. No other recent break-in has provoked similar
outcries.

The organization Computer Professionals for Social Responsibility issued a
statement calling the release of the worm an irresponsible act and declaring that no
programmer can guarantee that a self-replicating program will have no unwanted
consequences. The statement said that experiments to demonstrate network
vulnerabilities should be done under controlled conditions with prior permission, and it
called for codes of ethics that recognize the shared needs of network users. Finally, the

statement criticized the National Computer Security Center's attempts to block
publication of the decompiled worm code as short-sighted because an effective way to
correct widespread security flaws is to publish descriptions of those flaws widely.

The boards of directors of the CSNET and B1TNET networks issued a joint
statement deploring the irresponsibility of the worm's author and the _sruption in the

research community caused by the incident. Their statement called for a committee that

would issue a code of network ethics and propose enforcement procedures. It also called

-11-

for more attention to ethics in university curricula. (At Stanford, Helen Nissenbaum and

Terry Winograd have already initiated a seminar that will examine just such questions.)

The advisory panel for the division of networking and research infras_'ucture at

NSF endorsed the CSNET/BITNET statement, citing as unethical any disruption of the

intended use of networks, wasting of resources through disruption, destruction of

computer-based information, compromising of privacy, or actions that make necessary an
unplanned consumption of resources for control and eradication. The Intemet Activities

Board has drafted a similar statement. The president of the Association for Computing

Machinery called on the computer science community to make network hygiene a

standard practice (6). A congressional bill introduced July 1988 by Wally Herger (R-

Calif.) and Robert Can" (D-Mich.), called the Computer Virus Eradication Act, will

doubtless reappear in the 101st Congress.

Obviously, all this interest is provoked by the massive scale of the worm's

infestation and the queasy feeling that follows a close call. It also provides an

opportunity to review key areas of special concern in networking. In what follows, I will

comment on vulnerabilities of open and closed networks, password protection, and
responsible behavior of network users.

The rich imagery of worms and viruses does not promote cool assessments of what

actually happened and of what the future might hold. It is interesting that as recently as
1982 worm programs were envisaged as helpful entities that located and used idle

workstations for productive purposes (7); most people no longer make this benign

interpretation. Some of the media reports have mistakenly called the invading program a

virus rather than a worm. A virus is a code segment that embeds itself inside a legitimate

program and is activated when that program is; it then embeds another copy of itself in

another legitimate but uninfected program, and it usually inflicts damage (8). Because

the virus is a more insidious attack, the mistaken use of terminology exaggerated the

seriousness of what happened. Given that the security weaknesses in the Internet service

programs have been repaired, it is unlikely that an attack against these specific
weaknesses could be launched again.

While it is important not to overestimate the seriousness of the attack, it is equally

important not to underestimate it. After all, the worm caused a massive disruption of
service.

It is important to aknowledge a widespread concern that grew out of this attack: Axe

networks on which commerce, transportation, utilities, national defense, space flight, and
other critical activities depend also vulnerable? This concern arises from an awareness

of the extent to which the well-being of our society depends on the continued proper

functioning of vast networks that may be fragile. When considering this question, it is
important to bear in mind that the Intemet is an open network and the others are closed.

What is the risk to an open network? Because the Internet is open by design, its

computers also contain extensive backup systems. Thus, in the worst case, if the worm

had destroyed all the files in all the computers it invaded, most users would have

experienced the loss of only a day's work. (This contrasts starkly to the threat facing

most PC users, who because of the lack of effective backup mechanisms stand to lose

years of work to a virus attack.) In addition, users would certainly lose access to their

systems for a day or more as the operations staff restored information from backups.

-12-

What are the implications for other networks? Computers containing proprietary

information or supporting critical operations are not generally connected to the Interact;

the few exceptions are guarded by gateways that enforce strict access controls. For

example, the Defense Department's command and control network and NASA's space

shuttle network are designed for security and safety; it is virtually impossible for a virus

or worm to enter from the outside, and internal mechanisms would limit damage from a

virus or worm implanted from the inside. Given that the Intemet is designed for

openness, itisimpossible to draw conclusionsabout closednetworks from thisincident.

Calls to restrictaccesstothe Internetare ill-advised.The openness of the Intcrnetis

closelyaligned with a deeply held value of the scientificcommunity, the frccexchange

of research findings.The greatmajority of scientistsare willingtoaccept the riskthat

theircomputers might be temporarilydisabled by an attack,especiallyffa backup system

limits losses to a day's work.

The next area that calls for special concern is password security. Although

trapdoors and other weaknesses in Internet protocols have been closed, password
protection is a serious weakness that remains. (See Box 2.) The risk is compounded by

"mutually trusting hosts," a design in which a group of workstations is declared as a

single system: access to one constitutes access to all.

Many PC systems store passwords as unenciphered cleartext, or they do not use

passwords at all. When these systems become part of a set of trusting hosts, they are an

obvious security weakness. Fortunately, most systems do not store passwords as

cleartext. In UNIX, for example, the login procedure takes the user's password,

enciphers it, and compares the result with the user's enciphered entry in the password

file. But one can discover passwords from a limited set of candidates by enciphering

each one and comparing it with the password file until a match is found. One study of
password files revealed that anywhere from 8% to 30% of the passwords were the literal

account name or some simple variation; for example, an account named "abe" is likely

to have the password "abe", "bca", or "abcabc" (9).The worm program used a new

versionof the password encryptionalgorithm thatwas nine times fasterthan the regular

version in UNIX; thisallowed itto trymany more passwords in a given time and

increaseditschances of breaking intoatleastone account on a system. Having broken

intoan account, the worm gained easy accesstothatcomputer's trustedneighbors.

The finalarea of specialconcern istheresponsibilitiesof people who participatein

a largenetworked community. Although some observerssay thatthe worm was benign,

most say thatthe disruptionof serviceand preemption of so many man-hours toanalyze

the worm was a major nationalexpense. Some observershave saidthatthe worm was an

innocent experiment gone haywire, but the expertswho analyzed the code disputethis,

sayingthatthe many attackmodes, the immortalityof some worms, and the elaborate

camouflage allindicatethattheauthor intended the worm topropagate widely beforeit

was disabled. Most members of the computer sciencecommunity agree thatusersmust

acceptresponsibilityfor thepossiblewide-ranging effectsof theiractionsand thatusers

do not have licenseto accessidlecomputers without permission. They alsobelievethat

the professionalsocietiesshould takethe lead inpubliceducation about the need for

responsibleuse of criticaldatanow storedextensivelyincomputers. Similarly,system

administratorshave responsibilitiesto takestepsthatwillminimize the riskof disruption:

they should not toleratetrapdoors,which permit accesswithout authentication;they

-13-

should strengthen password authentication procedures to block guessed-password
attacks; they should isolate their backup systems from any Interact connection; and they

should limit participation in mutually trusting groups.

Certainly the vivid imagery of worms and viruses has enabled many outsiders to
appreciate the subtlety and danger of attacks on computers attached to open networks. It

has increased public appreciation of the dependence of important segments of the
economy, aerospace systems, and defense networks on computers and
telecommunications. Networks of computers have joined other critical networks that

underpin our society -- water, gas, electricity, telephone, air traffic control, banking, to

name a few. Just as we have worked out ways to protect and ensure general respect for
these other critical systems, we must work out ways to promote secure functioning

networks of computers. We cannot separate technology from responsible use.

.

References

1. E. Marshall. 1988.

1988). 855-856.

E. Marshall. 1988.
1122.

"Worm invades computer networks." Science 242 (11 Nov

"The worm's aftermath." Science 242 (25 Nov 1988). 1121-

3. E. Spafford. 1988. "The Internet worm program: an analysis." Technical Report
No. CSD-TR-823, available from Computer Sciences Department, Purdue

University, W. Lafayette, IN 47907. Published in the ACM Computer

Communication Review, Janual"y 1989, available from ACM, Inc., 11 W. 42 St.,
New York, NY 10036.

4. D. Seeley. 1988. "A tour of the worm." Technical Report available from the

Computer Science Department, University of Utah, Salt Lake City, UT 84112. In
Proc. Winter Usenix Conf., February 1989, Usenix Association.

5. M. Eichin and J. Rochlis. 1988. "With microscope and tweezers: an analysis of
the Internet Virus of November 1988." Technical Report, M1T Project Athena,
Cambridge, MA 02139.

6. B. Kocher. 1989. "A hygiene lesson." Communications of ACM 32, 3 & 6.

7. J.F. Shoch and J. A. Hupp. 1982. "The worm programs -- early experience with a
distributed computation." Communications of ACM, 2S, 3. 172-180.

8. P.J. Denning. 1988. "Computer viruses." American Scientist 76, 3 (May-June).
236-238.

9. F.T. Grammp and R. H. Morris. 1984. "UNIX operating system security." AT&T
Bell Labs Technical Journal 63, 8. October. 1649-1672.

-14-

BOX 1: How the worm worked

The Interuet worm of November 1988 was a program that invaded Sun 3 and VAX computers
running versions of the Berkeley 4.3 UNIX operating system containing the TCP/IP Intemet protocols. Its
sole p_ was to enter new machines by bypassing authentication procedures and to propagate new
copies of itself. It was prolific, generating on the order of hundreds of thousands of copies among several
thousand machines nationwide. It did not destroy information, give away passwords, or implant Trojan
horses for later damage.

A new worm began life by building a list of remote machines to attack. It made its selections from
the tables declaring which other machines are trusted by its current host, from users" marl-forwarding files,
from tables by which users give themselves permission for access to remote accounts, and from a program
that reports the status of network connections. For each of these potential new hosts, it attempted entry by
a variety of means: masquerading as a user by logging into an account after cracking its password;
exploiting a bug in the finger protocol, which reports the whereabouts of a remote user;, and exploiting a
trapdoor in the debug option of the remote process that receives and sends mail. In parallel with attacks on
new hosts, the worm undertook to guess the passwords of user accounts on its current host. It first tried the
account name and simple permutations of it. then a list of 432 built-in passwords, and finally all the words
from the local dictionary. An undetected worm could have spent many days at these password-cracking
attempts.

If any of its attacks on new hosts worked, the worm would find itself in communication with a

"shell" program - a command interpreter - on the remote machine. It fed that shell a 99 line bootswap
program, together with commands to compile and execute it. then broke the connection. If that bootstrap
program started successfully, it would call back the parent worm within 120 seconds. The parent worm
copied over enciphered files containing the full worm code, which was compiled from a C program
containing about 3,000 lines. The parent worm then issued commands to consauct a new worm from the
enciphered pieces and start it.

The worm also made attempts at population cona'ol, looking for other worms in the same host and
negotiating with them which would terminate. However, a worm that agreed to terminate would first attack
many hosts before completing its part of the bargain -- leaving the overall birthrate higher than the
deathrate. Moreover, one in seven worms declared itself immortal and entirely bypassed any participation
in population control.

The worm's author went to considerable pains to camouflage it. The main worm code was
enciphered and sent to the remote host only when the bootstrap was known to be operating there as an
accomplice. The new worm left no traces in the file system: it copied all its files into memory and deleted
them from a system's directories. The worm disabled the system function that produces "memory dumps"
in case of error, and it kept all character strings enciphered so that, in case a memory dump were obtained
anyway, it would be meaningless. The worm program gave itself a name that made it appear as an
innocuous shell to the program that lists processes in the system, and it frequently changed its process
identifier.

-15-

Box 2: Protecting Passwords

The worm's dramatic demonstration of the weakness of most password systems should prompt a
thorough examination in the context of networks of computers. The following are basic desiderata:

1. Every account should be protected by a password.

2. Passwords should be stored in an enciphered form, and the file containing the enciphered passwords
should not be publicly accessible (it is in UNIX).

3. Passwordsshouldbe deliberatelychosensothatsimpleattackscannotwork- forexample,they
couldincludeapunctuationmarkand anumeral.

4. New passwordsshouldbe checkedforsecurity--many systemshave(friendiy!)passwordcheckers
thatattempttodecipherpasswordsbysystematicguessing,sendingwarningmessagestousersff
theyaresuccessful.

5. To make extensiveguessingexpensive,therunningtimeofthepasswordencryptionalgorithm
shouldbemade high,on theorderofone second.Thiscanbeachievedby repeatedlyenciphering

thepasswordwithafastalgorithm.

6. New cost-effectiveformsofuserauthenticationshouldbeemployed,includingdevicestosense

personalcharacteristicssuchasfingerprints,retinalpatterns,ordynamicsignatures,aswellas
magnetic access cards.

7. Sets of computers that are mutually trusting in the sense that login to one constitutes login to all need
to be carefully controlled. No computer outside the declared set should have unauthenticated access,
and no computer inside should grant access to an outside computer.

-16-

Security of Data in Networks

American Scientist 1987, No l

Telescience is NASA's word for scientific research conducted via

networks that permit remote control of experiments and collaboration of

scientists around the world on analyzing the results. The safety of

remotely controlled experiments and integrity of research rest critically
on the ability of the network to authenticate senders and receivers, to

protect proprietary communications, and to sign some transmissions.

Mathematically sound schemes for encrypting data and distributing keys

make these goals attainable.

Telescience. This term is used by NASA to refer to scientific research conducted

with computers and instruments connected by networks over great distances. It includes

the remote design of experiments on space platforms, the operation of those experiments,

and the collaboration of scientists around the world in interpreting data and publishing

results. The next best thing to being there, telescience is expected to be a common mode

of research in all scientific fields by the mid 1990s.

For the safety of remotely-controlled operations and the integrity of their research,

experimenters want to be certain that they arc linked to their own instruments when they
request connections and that no one else can connect to those instruments. They want to

be certain that no one can alter the data transmitted from their instruments, or the

authorized commands sent to the instruments. They want to be certain that proprietary

communications with their co-workers cannot be disclosed. The first guarantee, called

authentication, certifies the identity of a principal -- person, computer, or device -

accessible on the network. The second guarantee, called integrity, certifies that a data

stream actually comes from a previously authenticated source. The third guarantee,

called secrecy, certifies that the content of a data stream is hidden from outside view.

Data transmissions covered by these guarantees arc called secure communications.

Telescience requires secure communications over high-bandwidth networks - 1 million

bits per second (Mbps) or more.

Who furnishes these guarantees? The agencies that design and operate a network

must provide for them in the communications protocols. All such mechanisms ultimately

rexlUirCthateach principalcan possess or obtaininformationthatidentifiesany other

principal.The identifyinginformationcan be embodied as a key to encipher data. The

mechanisms must be capable not only of efficientlyenciphering and decipheringdata,

but of distributingand protectingkeys. In what follows,Iwillpresenta briefsurvey of

thisfascinatingsubject.A comprehensive treatmentcan be found inDorothy Denning's

book Cryptography and Data Security(]).

Communication between principalscan be a two-way conversationin realtime,a

one-way, high-ratedata stream,or a one-way mail or datagram message. Some

communications must be signed by attachingan unforgeablemark thatwillestablishthe

-17-

sender's identity beyond reasonable doubt.

A communications path through a network may include many links, switches,
computers, local networks, and intemetwork gateways. In most networks these

components are vulnerable because data security was not a requirement of the original
design. Each component is a potential site for an intruder to eavesdrop on a
conversation, read mail, replay portions of prior messages, or alter a data transmission.
Because a pair of principals wishing to communicate have no control over these many

network components, they must use protocols that allow them to control the encryption
devices and the keys.

Traditional cryptosystems are based on a single key K known only to A and B, the
principals who wish to communicate. A message M is sent as ciphertext, denoted [M]r.
This scheme provides authentication as well as secrecy: if an attempt by B to decipher a
message produces gibberish, B knows that A could not have been the sender.

The best known computer-based cryptosystem is the Data Encryption Standard
(DES), promulgated in 1977 by the National Bureau of Standards. The DES uses a 56-

bit key to encipher successive 64-bit blocks of data. Computer chips embodying the DES
algorithm operate at speeds beyond 10 Mbps, which is faster than needed for most wide-
area communication networks. Controversies arose at the beginning over whether the

DES key was long enough to prevent the code's being broken by an enumerative search
for the key, and whether the code contained secret trapdoors that would permit the

government to read DES ciphers. Those controversies have quieted; no trapdoors have
been found. Double or triple ¢ncryption with different keys can be used for extra

protection. Because the DES is now ten years old, cryptographers have begun to seek
replacements suitable for commercial use.

Another kind of cryptosystem was proposed in 1976 by Whitfield Diffi¢ and Martin
Hellman of Stanford University. They called theirs a public-key cryptosystem to
distinguish it from the traditional private-key systems. The public-key system uses two
complementary keys: one is made public and is used to encipher messages; the other is
kept secret and is used to decipher messages. The secret key cannot be deduced from the
public key. Single-key cryptosystems are symmetric because the same key is used for
both enciphering and deciphering; two-key cryptosystems are asymmetric. In a
symmetric cryptosystem, almost any binary pattern can serve as a key, but a good deal of
computation is required to generate a pair of keys for an asymmetric cryptosystem.

The notation for a public-key system is straightforward. A principal A holds secret

and public keys, denoted SA and PA. To communicate with A, B sends the ciphertext
[M]pA ; A recovers the message by enciphering the ciphertext with the secret key,

because M=[[M]/'A]SA. A and B can hold a conversation by exchanging messages
enciphered under each other's public keys. Secrecy is assured because there is only one
copy of the secret key, held by the principal who generated it.

Secrecy and authentication are separated in a two-key cryptosystem. Secrecy
results from enciphering with the recipient's public key: anyone can generate [M]PA, but

only A can decipher it. Authentication results from enciphering with the sender's secret
key: only A can generate [M] sA , and anyone can decipher it. Two encipherments are
needed to provide both: [[/14] sA]/'B can be enciphered only by A and deciphered only by
B.

-18-

The first public-key ctyptosystem with these properties was devised in 1977 by

Ronald Rivest, Adi Shamir, and Len Adleman of M1T, and is known by their initials,

RSA (2). It works as follows: To generate a key, pick two large prime numbers p and q.

Then choose two integers d and e so that de mod (p-1)(q-1) = 1. (In general, x rood y

means the remainder after dividing x by y .) Let n =pq. The secret key is (d,n) and the

public key is (e,n). To encipher, compute C = [M] pA =Memod n. To decipher,

compute M = [C]SA =C,d rood n. Deciphering recovers M because of a classical theorem

of Fermat that says M '_ rood n =M.

As an example, suppose p --3 and q=11; then n=33 and (p-1)(q-1)=20. Pick

(d,e)=(3,7); this is valid because de rood 20 = 21 rood 20 = 1. Suppose M--4; the

ciphertcxt is then C=16, because 47 rood 33 = 16384 rood 33 = (33x496+16) rood 33 --
16. The deciphered message is M--4, because 163 rood 33 = 4096 rood 33 =

(33x124+4) rood 33 = 4.

The security of the RSA system relies on the extreme difficulty of factoring a large

composite number: If the prime components p and q could be recovered easily from n, a

deciphering key matching the public enciphering key could be computed easily. In the

summer of 1986, researchers at the Mitre Corporation factored an 84-digit number, the

largest ever, after several days of computation on a set of cooperating computers. To

protect against faster supercomputers and improved factoring algorithms, most designers

of RSA systems recommend that n be on the order of 200 digits (about 665 bits).

Computer chips containing the RSA algorithm have been developed. Because of

the large number of digits in each block of enciphered data (around 200), these chips are

rather slow, operating on the order of a few kilobits per second. This means that known

public-key systems are too slow for high-bandwidth, secret conversations between

computers.

What, then, is the advantage of a public-key system? It is the ability to separate

authentication from secrecy. This separation permits digital signatures, which allow

third parties to certify the identity of a sender. It works as follows: A signed message

consists of a header H, a body M, and a signature block X=[F (M)]S_; the header asserts

that the message came fi'om some sender, say A; the signature is a small block computed

from M and then signed with A's secret key. The data-compression function F, often

called a hashing function, is public; its result, F (M), is called a checksum. The receiver

will accept the message only ff the signature, deciphered with A's public key, is identical

to the checksum of the message actually received. IrA claims that B changed the

message, or B claims that A sent a different message, a third party can resolve the

dispute by deciphering the signature and comparing it to the claimed message's

checksum. If the message is a secret, the message body can be the ciphertext [M] K and

the enciphered key [K]_'B can be added to the signature block.

The same principles work in broader arenas. Suppose the space station contains a

telescope that emits a stream of data, which, by treaty, is supposed to be available to

every astronomer in the world. How can an astronomer be assured that a data stream is

in fact the one transmitted by the telescope, and that none of the data have been altered?

The raw data can be collected in a local buffer in the space telescope, which is assigned a

public key PT and secret key ST. Each buffer is treated as a message M; when the

buffer is full, the authenticator [F (M)]ST is appended, and the result is transmitted

publicly. Any receiver can reverse the process and check that each block of data is

-19-

authentic.

In 1978, Gus Simmons of Sandia Laboratories proposed a similar scheme for the

verification of compliance with test-ban treaties. He assumed that the United States

would require assurances that its monitoring device implanted in Soviet soil had not been
tampered with, and the Soviets would want to be able to read the transmissions of the
device.

There are many practical considerations to building secure signature systems that

will work in large networks. For example, the hashing function must deprive potential

intruders of effective means to construct fake messages with the same checksums as

authentic messages. The subject is covered well in articles by Donald Davies and

Dorothy Denning (3,4).

A cryptosystem is useless unless distribution of keys is secure. Let us examine this

problem for networks in which all conversations are protected by private-key

cryptosystems. How are keys handed out so that the communicants are sure of one

another's identities.'? An obvious solution relies on a registry service R. A private key is

generated for each principal A, one copy of which is stored in R and another copy on a

key card (or other medium) that can be inserted into an encryption device attached to A.

Now it is possible for R to provide A with private keys for conversations with other

principals in the network. Roger Needham and Michael Schroeder have proposed

protocols that allow any A and B, with help from R, to obtain a private key for a secure

communication between them (5). Victor Voydock and Stephen Kent have shown how

to apply these protocols in real networks (6).

The dependability of networks is sensitive to the correct, reliable operation of key

registries. The whole approach becomes unwieldy in large networks: Failures of

registries can prevent principals from initiating new conversations and can compromise

keys. Trust itself is a serious issue in a large network; the US and Soviet governments,

for example, are not likely to believe that each other's registries will refrain from

listening in on conversations for which they have passed out the keys.

The amount of faith required can be reduced by using public-key cryptography to

exchange the private keys for conversations. Now the registry service becomes simply a

directory service D. Principals can register public keys with D for later redistribution,

but they do not need to reveal their secret keys to D. To converse with B, A consults D

to obtain the public key PB, generates a conversation key K, and sends [K]/'/) to B with

a request to open a conversation. A must also authenticate itself to B, which can be done

with a certificate as discussed below. Now the responsibility for generating keys rests

with the communicants, and the directory service has no special knowledge that would

enable it to listen in on any conversations.

There is still a catch -- trusting the authenticity of public keys dispensed by the

directory service or by any other principal. The authenticity of this information can be

guaranteed by storing it as public-key certificates created, on request, by a network

notary service. Certificates are messages of the form [B ,PB ,T] sN, where SN is the

secret key of the notary service and T is the time of the certificate's creation. Anyone

can decipher a certificate using the notary's public key, thereby obtaining the public key

of the principal identified therein. If for some reason the notary's secret key is

compromised, all subsequently issued certificates are invalid. A good deal of effort must

-2O-

bc put intoprotectingthe notary'ssecretkey, but the effortisworthwhile because the

securityof network communications does not reston the trustworthinessof the directory
service(4).

The safetyof remotely controlledexperiments and integrityof researchrest

criucallyon the abilityof the network to authenticatesendersand receivers,toprotect

proprictarycommunications, and to signsome transmissions.Mathematically sound

schemes for cncrypting dataand disu'ibudngkeys make securityan attainablegoal.

References

1. Dorothy E. Denning. 1982. Cryptography and Data Security. Addison-Wesley.
(Especially Chapters 1 and 2.)

2. Ronald Rivest, Adi Shamir, and Lcn Adleman. 1978. "A method for obtaining

digital signatures and public-key cryptosystems". ACM Communications, Vol. 21,
February.

3. Donald W. Davies. 1983. "Applying the RSA digital signature to electronic

mail." IEEE Computer. February.

4. Dorothy E. Denning. 1983. "Protecting public keys and signature keys." IEEE

Computer. February.

5. Roger M. Ncedham and Michael D. Schmcder. 1978. "Using encryption for

authentication in large networks of computers." ACM Communications, Vol. 21,
December.

6. Victor L. Voydock and Stephen T. Kent. 1983. "Security mechanisms in high-

level network protocols." ACM Computing Surveys, Vol 15, June.

-21-

Baffling Big Brother

American Scientist 1987, No 5

Smart cards and cryptography enable a new system of business

transactions that balances the power of individuals to control how
information about them is linked and disseminated against the need of

organizations to be certain that credentials and payments are valid. Each

person uses a different name (pseudonym) with each organization and a

personal card computer manages all the names and cryptographic

protocols. The most difficult protocols are for credentials and payments.

Even though we complain about a world in which our transactions are

too easily traced, would we want a world in which none of our
transactions could be traced?

Who hasn't asked whether large organizations will one day be able to use

computers to monitor every detail of people's lives? Who doesn't occasionally wonder

whether our high-tech society is moving inexorably toward dossiers, surveillance,

scrutiny of private lives, and complete distrust of individuals? Who hasn't asked whether

anything can be done about these trends?

Commercial transactions began to be computerized in the 1950s. Today, most

businesses entrust valuable informadon assets to electronic media, using them to store

records, compute accounts, transfer funds, and generate receipts.

Two trends have accompanied this widening use of computers. The rate of

computer abuse has risen in direct proportion to the value of information assets and the

expertise of users, and the existence of databases has created incentives to link the data

they contain. To protect against abuse, organizations demand personal information from

customers for checking credentials; they keep confidential files on customer activities,

payments, and credit histories, frequently making it difficult for customers and

employees to review or correct information in those files. On the other hand, they often

sell or distribute information about their clients to other organizations. Government

agencies have begun to link information in their own and some private databases in their

efforts to detect persons who ate violating the law. What emerges is a one-sided

arrangement: most of the power to control information lies in the hands of organizations

and agencies. As a result, calls for legislation to protect individuals from abuse or

mistakes are increasingly heard.

Technology has been blamed for the gradual weakening of the individual's power,

but can technology strengthen the individual? The answer is yes. Card computers -- the

so-called smart cards - and public-key cryptography can be used to construct a system of

business transactions in which organizations have absolute assurance that all credentials

and payment orders are valid and individuals have absolute assurance that no group of

organizations can compile dossiers about them by linking databases.

-22-

David Chaum of the Centre for Mathematics and Computer Science in Amsterdam

has proposed a system of transactions that allows ordinary communications, payments,
and credentials to be exchanged electronically (1,2). In Chaum's system, it impossible
for the records of various organizations to be linked or traced to a specific individual;
individuals retain control over how information about them is used. The system also

protects the organizations against abuse -- perhaps even better than current systems.

Chaum's starting point is the possibility that a person can create a different name --
a pseudonym - for use with each organization. This is analogous to supplying each
bank, store, service establishment, or other organization with a different name, postal

address, and identification number. A card computer is needed to assist the person to
make transactions and keep track of which name is used with which organization. To
guarantee that they cannot be linked between organization, names are actually long
random numbers generated by the card computer. Public key cryptosystems are used for
communications and digital signatures.

Let me digress for a brief review of public key cryptosystems, which I described
more fully in the January-February issue (3). Associated with a name (or pseudonym) A

axe two complementary keys chosen by A. The public key PA is used to encipher

messages intended for A, and the secret key SA is used by A to decipher messages. The
secret key cannot be deduced from the public key. To insure their security, the keys must
contain about 200 digits (approximately 665 bits). The enciphem_nt of an item Z under

a key K is denoted [Z] to. A public key is sealed in a key certificate

K (A) - [A,PA ,D]SN,

where SIC is the secret key of a trusted notary and D is the date and time of the notary's
signature. Anyone receiving K (A) can unseal it by computing [K (A)]PN because the

public and private keys cancel; that recipient can have confidence that PA is A's public
key because only the notary could have sealed the certificate. A message M from A to B
is encoded as

[M,K(A)]PS.

Only B can decipher this message; B can reply to A by using the key enclosed with the

message. A block of the form [checksum(M)]SA can be attached to the message to serve
as a digital signature of the sender.

With cryptography, I can prevent organizations from linking records about me. I
simply generate a separate random number for each organization with which I deal and

use the numbers as pseudonyms in transactions with those organizations. It is impossible
for the organizations to link my assumed names because the connection between the
names is known only to me. Of course, if I reveal personal information in my messages,

organizations may be able to link message files under different pseudonyms by
comparing their contents. The assignment of separate pseudonyms guarantees only that
messages cannot be linked by using information in their headers and address fields.

Many business wansactions depend on credentials, special tamperproof
certifications that a specific person is authorized or qualified to do something. Examples
are driver's licenses, passports, and traveler's checks. A credentiai issued by X can be

-23-

represented electronically by a cryptogram

[A authorizedforT] sx.

Anyone can check that A has authorization for the specific transaction T by unsealing the

credential with the issuer's public key. (A receiver of the above credential may demand

proof that its bearer is in fact A ; the important authentication protocols that accomplish
this are not covered here.)

Credentials of this sort do not work with a multiple pseudonym system. The

problem is that the pseudonym by which the person is known to the issuer is sealed

inside the credential. Thus, if I obtain a credential from a bank under name A certifying

me for $1000 in credit, a store knowing me as B will not honor that credential. What is

needed is a way to transform a credential issued under one pseudonym into a valid

credential under a different pseudonym, without restricting my choice of pseudonyms.

Chaum has devised a method of accomplishing this seemingly impossible task. The

idea is that a name has a special form, consisting of a fixed part uniquely associated with

the person multiplied by a variable part that depends on the particular organization with

which thatname isused. The unique partcan be obtained from a specialregistrarthat

associatesa unique identifierwith a standarditem of personalinformationsuch as a

thumbprint; a person need give no otherinformationthan thisto theregistrar.Because a

person's unique identifierisa hidden,multiplicativecomponent of a name, no one else

can learnit;inparticular,theregistrarwillnot be ableto linkthe informationithas --

unique identifiersplus thumbprints--with any informationheld by another organization.

Within thisscheme a challengeprotocolisneeded to permit a thirdpartyto

determine unequivocally thattwo pseudonyms belong to the same person. Ifsome

organizationchallengesmy claim thatthe pseudonyms A and B are both mine, both the

claim and the challengecan be submitted toan arbiterwho can verifythatthe claim is

trucor falsewithout revealingmy unique identifier.Protocolsfordoing thisarc beyond

the discussionhere. I'llassume thatthe notarycan serve thisfunction.

To illustrateChaum's method, suppose thatIwant torequesta credentialof issuer

X under pseudonym A and presentittocredentialuser Y under pseudonym B.

Associated with a credentialof type T are secretand publickeys,ST and Fir,the secret

key being known only tothe credentialissuerX. Let U denote my unique identifier,and

letV and W denote random numbers Igenerate.From thesenumbers Icreatetwo

specialpseudonyms forthistransaction,

a = uW] _

b = U[W] _

and have them signed by the notary, who returns them in the key certificates K (a) and
K(b). My request to X for a credential takes the form

["Request T", K (a),K (A)]px.

On receipt, X can check that as A I am authorized for T and return the credential in the
form

-24-

[[a]_, K (T)]pA .

I can check that the credential comes from X and agrees with my request by unsealing it

with PT and checking that the result is a. To generate the credential for my pseudonym

B, all I need to do is divide the credential by V and multiply by W. This works because

[a]ST = [U[V]PT]ST __[U]STV, and similarly [b] sT = [U]STW. I pass the result to Y in
the form

["Claim T ", [b]ST,K (b),K (T),K (B)]PY.

Y can check the claim by unsealing the credential with PT and checking that the result is

b. Organization X can ask the notary tocertifythatthe pairK (a) and K (A) are both

mine and Y can do the same forK (b) and K (B). Thus thechallengeprotocol can be

used by the organizationsto assurethemselves thatIam not submitting special

pseudonyms and credentialsbelonging to another person.

Can thisscheme be used forpayments? The obvious approach istoextend

credentialsintoelectronicbank checks: Iobtainfrom my bank a credentialthatsays "A

isgood for ST"; then Itransformitas above to a credentialthatsays "B isgood for

ST", which Ipass to Y inpayment of a bill.Unfortunately,an electronicbank check is

susceptibletotracing.Suppose Irequesta check for an unusual sum, say $385, and a

shorttime laterY depositsthe same sum; by matching withdrawals and deposits,the

bank can tolinkmy pseudonyms A and B.

To avoid thiskind of tracing,Chaum proposes insteadto use electroniccurrency.
When Imake a withdrawal, the bank willreturna setof certificatesof standard

denominations; thus my payment of $385 might consistof three$I00 certificates,eight

$10 certificates,and five$I certificates.Unlike paper certificates,electronicones are

easy to copy, so itisnecessary toincludea method thatpermitsthe bank to recognize the

firstcopy of a currency certificate.The obvious method, allowing the bank toattacha

note number to the originalcertificate,willnot work because the note number would

permit the bank tolinkmy pseudonyms A and B. What isneeded insteadisa way thatI

can provide a note number thatthe bank cannot associatewith me, and sealthatnote
number in the credential.

One way toaccomplish thisisthe following. Suppose k binarybitsare allocated

for names. Iwillexploitthe factthatifIstringtwo copies of the k-bitname n together,I

createa binary stringof 2k bits,representingthe number n 2k+n. To initiatea payment
of denomination T, Ichoose arandom note number N and hide itin the name

M=(N2k'+.N)[V] pT. My requesttothe bank takes the form

["Request denomination T", M, K (A)]PX.

after deducting $T from my account, the bank returns the certificate

[[M]ST,K (7")]PA.

When I divide the certificate by V, I transform it automatically to [N24N]ST. I can

submit the transformed certificate to the store, which can unseal it with PT and verify

-25-

from its two-copy structure that it is worth ST. In turn the store can submit the certificate

to the bank, which can extract the note number and deposit $T in the store's account if
that note number has not been seen before.

Chaum's system of transactions is different from current systems in three principal

ways. First, a person can use a different pseudonym, a random number, for each

organization. Current systems are based on universal identifiers. Second, a person can

use a card computer to manage interactions with organizations under each pseudonym, to

generate random numbers for use in names, and to carry out the cryptographic protocols.

A card computer need have no secrets from its owner. Current systems rely on

organizations giving customers cards that contain secret patterns known to the

organization but not to the card holders. Third, individuals get to control how

information about them is distributed and linked. Current systems are one-sided, giving
organizations most of the power to protect themselves from abusive customers while

giving customers little power to protect themselves from abusive organizations.

So a system of untraceable business transactions is technically feasible. But is such

a system politically feasible? Even though we complain about a world in which our

transactions are too easily traced, would we want a world in which none of our
transactions could be traced?

References

1. D. Chaum. 1985. "Security without identification: Transaction systems to make
Big Brother obsolete." ACM Conmmnications 28, 10, October. 1030-1044.

2. D. Chaum. 1987. "A secure and privacy-protecting protocol for transmitting

personal information between organizations." Proc. CRYPTO 86 (A. Odlyzko, Ed.).

Lecture Notes in Computer Science. Springer-Verlag.

3. P. Denning. 1987. "Security of data in networks." American Scientist 75, 1. 12-
14.

-26.

How smart cards can help

A

personalcard
computer

2
bank

organizations

Smart cards and c_/ptographymake posslbles new system of
businesstransaclk)nsthat baJancesthe interests of individuals
and organizations.IndivtduJscan _ howinformaUoaabout
them is linkedand disseminatKI, andorganizaltonscan be
cerUdnthat _ and paymantsare valid. Eanh pemon
usesa d_emnt name---s pmx_c_n--w_ each o_anizatlon,
and a personalcard computermar4ges aJlthe names and
c_A0tographicprotocols.The diagramshowsthe interactions
neededin a paymant Inmuc_n. Under I_Nmdowm A, the user
requestsa paymem credentialof danornir_lionSTfrom
bank (1), which deductsthe money from A'$ acoount and issues
the cmdent_ (2). The oredant_ is a oryptogramanciphemd
withthe denomination's ucmt key;anyonecan read it by
deciphering w_ the denomination's _ key. Using a s/rn_
transformatlon, me card computer oorNerts me creder_ to ba
va,d for pseudonym B without aJtmlngthe _ that the
bank is willing to pay the holder $'r (3). The result is forwarded
to a store (4) in payment of a bill. and the store can in turn
forward U_epaymant to the bank for deposlt to _ accoum (5).
Pseudonymsconsimof a unique identifier multipliedby a
randomnumber chosanby the person;the convemon at step 3
is simplya repkcemant of the randomnumbercorrespondingto
the bank with the randomnumber con,espondingto the stem. A
notenumber mustbe includedin _te credentialso that the bank
can recognizeduplicates(and not pay them).

